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factor in the first formula of (9), i. e. the perturbations fade with time, Hence the rota- 
tion of a viscous incompressible fluid is stable with respect to such perturbations. 
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A solution of the Naviec-Stokes equations for the flow of fluid in and outside a 
drop with conditions of matching at the interface is derived by the method of 
finite differences. Drag coefficients ace determined in the range (0.5 < Re d 

100) of Reynolds numbers for a solid sphere, a drop, and a small gas bubble. Voc- 
tex and velocity distribution at the drop boundary is determined. 

The flow around a solid sphere in the intermediate range of Reynolds numbers had 
been ~ocoughly inv~tiga~d El]. Solutions for the problem of flow around a spherical 

drop ace presented in [Z, 31 for Re 4 1 . The method of joining asymptotic expansions 
was used in [4] for obtaining a solution for small Re with allowance for inertia terms in 
the Naviec-Stokes equations. In [5 - ‘71 solutions were derived for Re > 1 in the boun- 
dary layer approximation (a detailed analysis of approximate solutions for low and high 
Re appeared in the survey paper f8]). The particular case of the drop of water ln air, 

which is distinguished by the high ratio viscosities of the inner and outer media (p z 

56), was investigated in [Q] in the intermediate range of Reynolds numbers by the method 
of finite differences. It was shown there that for such p the drag of the moving drop is 
virtually the same as that of the solid sphere. Here, the drag of the drop is investigated 
for O,rP<, and Re<iOO. 

The ce~tii~earu~form motion of a drop in a homogeneous mass force field is consi- 
dered, The Webec number is assumed to be fairly low so that the drop victually retains 
its spherical shape. 

In a system of coordinates attached to the drop the motion is steady and axisymmetcic 
up to Re z 106 , as in the case of a solid sphere [IO]. 

With the coordinate origin located at the drop center and the polar axis directed down- 

stream (6 = 0) , the Navier-Stokes equations for the fluid flow in and outside the drop 
and the boundary conditions at the drop surface, expressed in terms of variables 9 (the 
stream unction) and 5 (the vortex), are of the form 
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where Rei are Reynolds numbers ; pi are densities, and pLi are dynamic viscosities, with 
subscripts i = 1 and 2 denoting quantities in the inner and outer regions, respectively. 

The velocity u, away from the drop and the drop radius a are taken as units of velocity 
and length, respectively. 

Besides the specified above conditions of continuity of the velocity vector and of the 

tension tensor at the drop surface, conditions of axial symmetry and steadiness of the flow 
at infinity must be satisfied. 

For solving the problem in the outer region we introduce the new unknown I&* related 

to +12 by the formula I& -= r/z r2 sin 0 + &*, and transform the outer region into a semi- 
circle by the substitution r z 1 i ~1 . 

The method of variable directions is used. The first derivatives are approximated b) 

central differences of second order for both the constant and the variable pitch grids. 

Here, unlike in [ll], the difference analog of joining conditions represented by the last 
two equalities in (1) is satisfied as follows. At each n-th layer the new j,” and ~~‘1 at 

a particular point of the boundary are determined by the values of cr”-‘, <z*-r, u”rn-’ 
and ~~~n-1 at the corresponding points of the preceding layer with the use of formulas 

where b is a parameter determined by the condition of best convergence (0.1 & j3 ,( 2). 

This method of approximating boundary conditions for fluid-fluid interface is an ex- 

tension of Dorodnitsyn’s method (for solid body-fluid interface). It becomes identical 
to the latter for IL - x + 

The computation of a single variant for each of the two regions using a 20 i: 2~ grid 
requires 5- 10 minutes of computer time. 

The controlling parameters of the problem are: RI’,. ;L, i p2 and 1’1 / oz. The last of 

these appears in the system of equations of our problem in terms of Rr., (r,, ’ 0:) !!I> 

{t, 1 l<c*,. The effect of Rc, on the flow was specifically investigated. As shown in [lo], 
the inner flow for Rr, 4 1 is defined by Hill’s vortex. Since the latter reduces sepa- 

rately the convection and viscosity terms to zero, it represents the exact solution of the 
Navier-Stokes equations, which is independent of the Re number, Hence at small it% 
the Re, number does not affect the stream. Computations #how that for fixed 1~ and RI*, 
in the range 1 < Rcz < 1110 the variation of J:C, wimin the range 1 < He, CT’ IOU has 
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virtually no effect on the flow characteristics (variation of the drag coefficient is of the 
order of 1%). In our computations we assumed Re, = R%. 

Table 1 

p*\Rerj --h ) 1 1 2 1 5 1 10 ) 20 1 50 \ 100 

0 33.8 17.5 9.3 4.25 2.43 1.41 0.69 0.4[l 
0.333 38.3 19.9 10.6 4.89 2.87 1.71 0.89 0.55 

1 42.9 22.4 12.1 5.65 3 . 33 2.05 1.12 (I. 74 
3 47.4 24.8 13.4 6 36 3 .80 2.38 1.36 IJ. ‘Jfi 

DC: 52~2 27.4 14.7 7.05 4.28 I 2.71 1 ..r;lS : 1.1l 

Drag coefficients of the solid ball (u =~ CO), gas bubble (11 =: 0) and the drop (u = 

6.333, 1, 3) are specified in Table 1. The drag coefficient of the solid sphere variesnot 
more than 1% from that calculated in [l] which shows a good correlation with experimen- 

tal data (a 100 x 60 grid was used in [l]). 

Cnx 
-c, 

Ratio of the drag coefficient of a gas bubble 
to that of a solid sphere is for Xc, 4 1 equal 

to ‘/s. Table 1 shows that this ratio decreases 

0.8 

0.6 

0.4 

with-increasing R e2, reaching 0.366 for Re, := 
100. It may be assumed that the character of 
dependence of the drag coefficient on the ratio 

of viscosities remains unchanged also for Re,>l 
Hence, by analogy to the case of R cp -+: 1 , the 
drag coefficient of the drop can be defined in 
terms of drag coefficients of the solid ball (C,_U, 

and of the gas bubble (CXO1 for the same Rr, 

u. 2 
by the formula 

0.5 f 510 50 C,Z 
l’CXm + CX* 

ti+t - 
Fig. 1 

This formula yields values of the drag coeffici- 
ent that coincide with calculated values (see 

Table 1) with an error not exceeding 57, hence it can be used in practical computations. 
The dependence of the ratio of the form drag coefficient to that of total drag (C,,, 1 C,‘X). 
i.e. the contribution of the normal component of tension to total drag, on Re, is shown 

in Fig. 1. Low in contributes to greater mobility of the boundary and a more intensive 
circulation of fluid Inside the drop. This results in the decrease of the contribution of 
tangential tension and in the increase of the ratio Cni / C, which reaches its maximum 
for u = 0 (tangential tension at the bubble surface is zero and the total drag coefficient 

is equal to that of form drag). The ratio L’,, / C‘,in the case of poorly streamlined bo- 
dies (solid sphere, cylinder) increases with increasing Re . This is due to the appearance 
of a stagnation zone followed by flow separation. This increase becomes less pronounced 
with decreasing TV , owing to the slower development of the stagnation and separation 
zones. 

Vortex and velocity distribution at the surface of a sphere are shown in Fig.2 for seve- 

ral values of He, and P (angle 8 is measured from the leading stagnation point), Curves 
1 relate to 1le2 = 0.5 and tt = f: curves 2 and 3 relate to Re, = 20 and p = 1 and 
00; curves 4, 5, 6 and 7 relate to Rc, -7 100 andp =~ 0, 1. tOand o , respectively. 
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The change of p from CM to 0 (as applicable to the solid ball, the drop and gas bubble) 
is accompanied for a fixed Be, by a reduction of the vortex and simultaneous increase 
of velocity at the surface, with a widening of the range of these parameters, Such change 
(of p ) results in the decrease of tangential tension at the sphere surface which can be 

Fig. 2 

Fig. 3 

expressed in terms of the vortex and velocity by the formula 

%l = -& (52 - 2% )+=I 

The asymmetric distribution of tangential forces over the sphere surface becomes more 
pronounced with increasing Re, and p . In spite of this the pattern of streamlines inside 
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the drop (Fig. 3) is only slightly different from that of a flow corresponding to Hill’s 
vortex even for relatively high me, and p , while the vortex intensity distribution differs 

considerably (in the case of Hill’s vortex lines 5 = const are straight lines parallel to 
the polar axis). Streamlines and the vortex distribution (lines 5 = const) for Re, = 100 
and p = 10 are shown in Fig, 3 (this variant was computed with the use ofa 40 x 40 
grid in each of the two regions). Owing to the nonzero velocity at the interface of the 

two fluids, the separation point of the zero streamline is determined by the vanishing 
of velocity and not by the tangential tension, as is the case with the flow around a solid 

body. That point does not determine the reverse flow zone, whose size can be defined 
by the angle of maximum spread of the attached vortex in the upstream direction (the 
angle between the polar axis and the tangent to the zero streamline drawn from the 
coordinate origin). 
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